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Abstract

The detonation of a radiological dispersion device or other radiological incidents could result in 

the dispersion of radioactive materials and intakes of radionuclides by affected individuals. 

Transportable radiation monitoring instruments could be used to measure photon radiation from 

radionuclides in the body for triaging individuals and assigning priorities to their bioassay samples 

for further assessments. Computer simulations and experimental measurements are required for 

these instruments to be used for assessing intakes of radionuclides. Count rates from calibrated 

sources of 60Co, 137Cs, and 241Am were measured on three instruments: a survey meter containing 

a 2.54 × 2.54-cm NaI(Tl) crystal, a thyroid probe using a 5.08 × 5.08-cm NaI(Tl) crystal, and a 

portal monitor incorporating two 3.81 × 7.62 × 182.9-cm polyvinyltoluene plastic scintillators. 

Computer models of the instruments and of the calibration sources were constructed, using 

engineering drawings and other data provided by the manufacturers. Count rates on the 

instruments were simulated using the Monte Carlo radiation transport code MCNPX. The 

computer simulations were within 16% of the measured count rates for all 20 measurements 

without using empirical radionuclide-dependent scaling factors, as reported by others. The 

weighted root-mean-square deviations (differences between measured and simulated count rates, 

added in quadrature and weighted by the variance of the difference) were 10.9% for the survey 

meter, 4.2% for the thyroid probe, and 0.9% for the portal monitor. These results validate earlier 

MCNPX models of these instruments that were used to develop calibration factors that enable 

these instruments to be used for assessing intakes and committed doses from several gamma-

emitting radionuclides.

Keywords

counting efficiency; Monte Carlo; detector; scintillation; whole-body counting

For correspondence contact: Robert Anigstein, PhD, S. Cohen & Associates, 740 West End Avenue, Apt. 95A, New York, NY 10025, 
or at anigstein@cs.com. 

The authors declare no conflicts of interest.

HHS Public Access
Author manuscript
Health Phys. Author manuscript; available in PMC 2017 November 27.

Published in final edited form as:
Health Phys. 2016 June ; 110(6): 612–622. doi:10.1097/HP.0000000000000496.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



INTRODUCTION

A radiological emergency, such as the detonation of a radiological dispersion device (RDD 

or “dirty bomb”), a severe reactor accident, or the surreptitious introduction of radioactive 

materials into food or drinking water could result in a large number of people being 

internally contaminated. There would be a need to screen these individuals rapidly for 

internal contamination to help determine if medical intervention is warranted. Such 

screening could also provide reassurance to potentially contaminated individuals who do 

not, in fact, have significant levels of internal contamination, and to their families.

Intakes of radionuclides can be assessed by in vitro bio-assay (e.g., urinalysis) or by use of 

radiation detection instruments that measure radiation emitted by radionuclides in the body 

(direct or in vivo bioassay). The latter method, which customarily employs whole body 

counters, can yield immediate estimates of intakes and doses from radionuclides that emit 

energetic photons or beta rays that produce bremsstrahlung x rays. However, due to their 

limited availability, existing whole body counters may not be adequate for screening large 

numbers of potentially affected individuals.

On the other hand, portable or transportable radiation monitoring instruments are widely 

available and can be used to rapidly screen individuals for beta- or gamma-emitting 

radionuclides. Such triage can assist in assigning priorities to affected individuals or to their 

urine samples for more definitive laboratory assessment. While many of these instruments 

can measure the radiation emitted from the human body following intakes of certain 

radionuclides, computer simulations that are validated by experimental measurements are 

needed for the instruments to provide reliable estimates of intakes and committed internal 

doses.

Previous studies

Several previous studies have aimed to develop computer models of radiation detection 

instruments that could be deployed in the field to assess internal contamination of 

individuals following intakes of radionuclides.

Kramer et al. (2005) used a high-purity germanium detector coupled to a multichannel 

analyzer (MCA) to measure count rates from discrete radioactive sources embedded in 

plastic disks, as well as from volume sources consisting of aqueous solutions of 

radionuclides contained in hollow compartments of anthropomorphic phantoms. The authors 

then constructed a model of the detector using the MCNP5 (Monte Carlo N-Particle, Version 

5) radiation transport computer code and used the model to simulate the measured count 

rates. The results showed an average ratio of 1.39:1 of the MCNP§ simulations of the 

discrete sources to the experimental measurements, over an energy range of 60–1,173 keV. 

The authors attributed the differences between the measured and calculated count rates to the 

§The term “MCNP” refers to a family of codes that includes MCNP5, MCNPX, and MCNP6. In the present paper, the term “MCNP5” 
or “MCNPX” is used to refer to the use of that specific code and to features that are unique to that code; the generic term “MCNP” is 
used to describe features and capabilities common to the MCNP family.

Anigstein et al. Page 2

Health Phys. Author manuscript; available in PMC 2017 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



limited information on the detector obtainable from the manufacturer (due to the constraints 

of its proprietary design) that prevented the construction of a more accurate MCNP model.

Scarboro et al. (2009) used MCNP5 to construct a model of the Captus 3000 thyroid uptake 

probe (Capintec Inc., Sales and Marketing and Customer Support, Ramsey, NJ, USA). The 

authors then used the model to simulate the count rates from each of six discrete radioactive 

sources placed inside a polymethyl methacrylate (PMMA) slab phantom, with various 

thicknesses of PMMA between the source and the detector. Results were reported for three 

radionuclides: 22Na, 137Cs, and 241Am. For 22Na, the ratio of MCNP simulations to 

experimental results over a range of 0–108 mm of PMMA varied from 0.96 to 0.99 with an 

average of 0.97. Corresponding results for 137Cs showed a range of 0.90–0.95 with an 

average of 0.93, while for 241Am, the ratios ranged from 1.18 to 1.36 with an average of 

1.31. Thus, while the agreement was excellent for 22Na, the highest-energy gamma emitter, 

the agreement declined for the two radio-nuclides with lower-energy emissions.

Manger et al. (2012) used the same slab phantom and radioactive sources and a 

methodology similar to that of Scarboro et al. (2009) to construct and test MCNP models of 

two plastic scintillation detectors: the Canberra Syrena Handheld Search Monitor (no 

information on current availability) and the Thermo Micro Rem Tissue Equivalent Survey 

Meter (current version: Thermo Micro Rem/Sievert Tissue-Equivalent Survey Meter; 

available from Thermo Fisher Scientific Inc., Waltham, MA, USA). Because the measured 

count rates were significantly lower than the MCNP5 simulations, the authors developed 

scaling factors for each radionuclide-detector combination, ranging from 0.15 for 241Am 

measured with the Syrena monitor to 0.82 for 137Cs and the Micro Rem meter. These factors 

were to be used to adjust the modeled counts from an individual internally contaminated 

with one of these radionuclides to yield the expected count rate on the corresponding 

instrument. The authors suggested that the differences between the measured and simulated 

counts may have been due to differences in material compositions and densities between the 

physical detectors and the MCNP models.

Dewji et al. (2013) constructed and tested an MCNP5 model of the Canberra Model 802 

Scintillation Detector (Canberra Industries Inc., Meriden, CT, USA), which incorporates a 

5.08 × 5.08-cm NaI(Tl) crystal. The authors used the same radioactive sources and slab 

phantom as Scarboro et al. (2009). However, instead of accumulating gross counts, they 

connected the detector to an MCA and used the system to collect counts in 1,024 energy 

bins with a dispersion of 3.17 keV per channel. They used their MCNP model to simulate 

the counts in the same energy bins, employing the MCNP Gaussian energy-broadening 

(GEB) option, described later in the present paper, to simulate the statistical broadening of 

the photopeaks. They then compared the count rates in the photopeak regions of each 

radionuclide in the experimental and simulated spectra. These regions were selected 

manually to encompass the counts in each photopeak, or in groups of photopeaks, for 

radionuclides with several closely spaced gamma-ray emissions in the experimental and 

simulated spectra. The authors applied scaling factors to account for differences in the count 

rates in individual photopeak regions of the six radionuclides used in the study. These 

scaling factors ranged from 0.85 for the high-energy (1,173.2 and 1,332.5 keV) gamma rays 

from 60Co to 1.0 (i.e., no correction) for the 59.5-keV gamma ray of 241Am.
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Present work

Anigstein et al. (2007–2010) demonstrated that radiation detection and imaging systems 

commonly found in hospitals could be used to screen individuals for radionuclides taken 

into the body. The current study extends these investigations to three transportable 

instruments—the Ludlum Model 44-2 sodium iodide (NaI[Tl]) gamma scintillator (Ludlum 

Measurements Inc., Sweetwater, TX, USA), the Captus 3000 thyroid uptake probe, and the 

Transportable Portal Monitor Model TPM-903B (Rapiscan Systems, Longmont, CO, USA)

—that could potentially be used for such screening after a radiological incident. One 

objective of the present study was to accurately model the response of these instruments in 

order to obtain good agreement with actual measurements without the use of empirical 

radionuclide-dependent scaling factors, such as those employed by other investigators.

The first step was the measurement of count rates from discrete radioactive sources 

of 60Co, 137Cs, and 241Am to validate the computer models that had been constructed of 

these instruments using the Monte Carlo radiation transport code MCNPX 2.7.0 (Monte 

Carlo N-Particle eXtended; LANL 2011). The radionuclides were selected from the “nine 

isotopes of interest for RDDs” listed by ANL (2007). Americium-241 was included in these 

experiments to provide validation for low-energy photons—its principal gamma ray has an 

energy of 59.54 keV. Because of the low efficiency of these instruments for detecting this 

nuclide, combined with its high dose coefficients, they would most likely not be effective for 

screening individuals for intakes of this radionuclide below the Clinical Decision Guide of 

250 mSv for adult men and nonpregnant adult women (NCRP 2008).

The measurements were performed at the Penn State Milton S. Hershey Medical Center in 

Hershey, PA.

MATERIALS AND METHODS

Radioactive calibration sources

Radioactive calibration sources used in the experiment comprised 60Co and 137Cs [Catalog 

Nos. GF-060-D and GF-137-D, Isotope Products Laboratories (now Eckert & Ziegler 

Isotope Products Inc.), Valencia, CA, USA], and 241Am (Model CAL2600 Gamma 

Standard, North American Scientific, Inc., Chatsworth, CA, USA).** All three sources are 

traceable to the National Institute of Standards and Technology. Each 60Co and 137Cs source 

consists of evaporated salts that had been deposited at the bottom of a cylindrical cavity in 

an acrylic disk, after which the cavity had been plugged with an epoxy resin. The source was 

modeled as a circular area, 5 mm in diameter and 2.77 mm from the face of the acrylic disk. 

The 241Am source is in the form of a resin bead, 1 mm in diameter, mounted in the center of 

a 3-mm-thick acrylic disk, and was modeled as a point source.†† Table 1 lists the activity of 

each source based on the activity certified by the manufacturer, corrected for radioactive 

decay using the half-lives listed in the table. Both manufacturers cited uncertainties at the 

**Since the 241Am source was procured, the calibration source business of North American Scientific Inc. was acquired by Eckert & 
Ziegler Isotope Products Inc.
††Simulations of the 241Am source distributed over the spherical volume produced count rates that were the same as those from a 
point source, within the uncertainties due to Monte Carlo statistics. The simpler point-source model was used in the interest of 
computational efficiency.
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99% confidence levels. The coefficient of variation (cv) of the activity of each source was 

derived from its cited uncertainty, assuming the uncertainties were normally distributed. In 

performing the experimental measurements, the edge of each source disk was attached to the 

end of a 1.27-cm-diameter acrylic rod in order to minimize photon scattering.

Ludlum Model 44-2 gamma scintillator

The Ludlum Model 44-2 gamma scintillator consists of a 2.54 × 2.54-cm NaI(Tl) crystal 

coupled to a photo-multiplier (PM) tube. The probe was connected to a Ludlum Model 16 

Analyzer, which functioned as a counting rate meter. Measurements were performed with 

each source positioned along the axis of the detector at distances of 5 and 30 cm from the 

face of the probe. Background counts were recorded both before and after the source 

measurements.

Captus 3000 thyroid uptake system

The Captus 3000 thyroid uptake system incorporates a 5.08 × 5.08-cm NaI(Tl) crystal and 

PM tube detector assembly, and a 1,024-channel MCA. The detector assembly is located 

inside a lead-lined collimator.

Count rates were measured with each source positioned along the axis of the detector at two 

locations: near the end of the conical collimator (the actual location varied slightly for each 

source) and 50 cm from the aluminum housing that covers the NaI(Tl) crystal. An energy 

window, spanning a single region of interest, was set for each radio-nuclide. The energy 

windows and source-to-detector distances are listed in Table 2. Counts from 60Co 

and 241Am were measured using a single energy window for each radionuclide. Two sets of 

counts were measured from 137Cs, using two distinct energy windows. All counts, including 

background, were accumulated for a period of 2 min.

TPM-903B portal monitor

The Model TPM-903B portal monitor was manufactured by TSA Systems Ltd. (now a part 

of Rapiscan Systems Inc.) and is distributed by Thermo Fisher Scientific Inc. (Franklin, MA, 

USA). As described by the manufacturer: “The system consists of twovertical pillars and an 

overhead cross-piece, which serves as an interconnect. The pillars are made of PVC 

[polyvinyl chloride] cell core pipe… The pillar spacing is fixed at 32” [81.28 cm] to provide 

adequate clearance for wheelchairs. Each pillar contains a radiation detector assembly and 

detector module. The system controller and occupancy detector are mounted on one of the 

vertical pillars.”‡‡

Fig. 1 shows a schematic diagram of the TPM-903B. Each radiation detector consists of a 

plastic scintillator in the form of a rectangular slab, 3.81 × 7.62 × 182.9 cm high, composed 

of polyvinyltoluene (PVT) with additional ingredients, and an acrylic light pipe and a PM 

tube that are coupled to the scintillator near the bottom of the pillar. The unit is equipped 

with lower and upper level discriminators (LLD and ULD) that can be adjusted by the user. 

‡‡Thermo Fisher Scientific Inc. Transportable Portal Monitor Model TPM-903B: Operating and service manual, Doc. #5003 Rev. B 
(unpublished); 2010.
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The demonstration unit used for these measurements had a space of 76.2 cm between the 

two pillars.

The LLD and ULD were first fixed at the assumed factory settings of 0.098 and 5.04 V.§§ 

According to Thermo Fisher, “Approximately 1 volt of discriminator level equals 330 keV.” 

These settings thus correspond to a nominal photon energy range of approximately 32.3–

1,650 keV (TSA 2006). However, the system is reported to be very nonlinear at low 

energies, so that the actual low-energy threshold could be ±20 keV of the nominal value.***

To perform the measurements, the instrument was set to the background counting mode and 

the count time adjusted to 20 s, the maximum time that could be set on this monitor. The 

background count rate was measured first. The occupancy detector was then disabled so that 

the unit would always be in background mode. Such a procedure was necessary because, in 

the normal mode of operation, the monitor calculates a count rate using an integration time 

of 1 s. By counting in background mode, 20 times as many counts were accumulated, 

resulting in a more precise determination. Each of the three disk sources, in succession, was 

placed at the midpoint of the two pillars at the elevation of the calibration spots shown in 

Fig. 1. For the first set of measurements, the LLD was lowered to 0.054 V in order to 

achieve greater sensitivity, especially to the 241Am source. The LLD was then restored to its 

assumed factory setting of 0.098 V, and the measurements were repeated.

Monte Carlo simulations of experimental measurements

Mathematical models of the instruments were constructed to perform Monte Carlo 

simulations of the radiation response of these instruments. These models were used to 

develop calibration factors that enable these instruments to be used to assess intakes of 

radionuclides by individuals with internal contamination. The models were validated by 

comparing the Monte Carlo simulations to the experimental results. The analysis also 

included a mathematical model of each radiation source and a model to simulate the 

transport of radiation from the source to the detector.

Radiation transport was modeled by means of MCNPX. The calculations used the MCNP 

pulse height tallies, which record detector events that fall into specified energy bins. The 

results are recorded as count per source photon and represent the probability that a photon 

emitted by the source would produce a pulse within the specified energy range.

An MCNP model of the Ludlum Model 44-2 gamma scintillator was constructed from 

engineering drawings furnished by Ludlum Measurements Inc., supplemented by telephone 

and email communications with Ludlum engineers. A cross-sectional view of the MCNP 

model that was generated by the MCNPX code package is shown in Fig. 2. Note that each 

material with the same density and composition is shown in a unique color.

A model of the Captus 3000 thyroid uptake probe was constructed from engineering 

drawings furnished by Capintec Inc., supplemented by telephone consultations and email 

§§At the time of the experiment, there was conflicting information on whether the LLD factory setting was 0.068 or 0.098 V. Thermo 
Fisher Scientific Inc. later confirmed that 0.068 V is the standard for current instruments—it was 0.098 V on the older ones.
***Timothy Gregoire, Radiation Systems Engineer, Rapiscan Systems Inc., 21 November 2011, personal email to Robert Anigstein.
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correspondence with Capintec engineers. A cross-sectional view of the model is shown in 

Fig. 3.

A model of the TPM-903B portal monitor was constructed from information provided by 

TSA (2006), Thermo Fisher,†† Eljen Technology (2010), and an official of TSA Systems 

Ltd.††† A cross section of the model of one column of the portal monitor is shown in Fig. 4. 

The plastic scintillators are offset from the centers of the PVC columns to allow room for the 

acrylic light pipes and PM tubes that are coupled to the scintillators near the bottom of each 

column.

The primary source of the decay schemes of radio-nuclides in the present study is the 

Evaluated Nuclear Structure Data File (ENSDF; BNL 2015). Data were also extracted from 

“ENDF/B-VII.1 Decay Data” (LANL 2012), which contains detailed listings of the ENSDF 

decay data in a readily accessible format, including detailed x-ray spectra not readily 

accessible from the Brookhaven National Laboratory website. Table 3 lists the photon 

spectra of the radionuclides used in the present analysis. Each spectrum encompasses more 

than 99.99% of the total intensity of photons with energies greater than 3.5 keV.

Gaussian energy distribution

Energy deposited in an NaI(Tl) crystal or a plastic scintillator produces a scintillation that in 

turn generates an electrical pulse in the detector system. The inherent statistics of the 

underlying processes produce a broadening of the photopeak. These processes cannot be 

explicitly modeled in standard Monte Carlo codes. However, a GEB treatment can be 

applied to the pulse height distribution to account for the energy resolution of the detector. 

Siciliano et al. (2008) also used GEB to represent the broadening of spectral lines from 

plastic scintillators due to nonstochastic effects such as the nonlinear relationship between 

light output and deposited energy and the dependence of light collection on position in a 

large detector.

MCNP uses the following expression to represent GEB:

(1)

where

F(E) = full width at half maximum (FWHM) (MeV);

E = energy deposited in detector (MeV); and

a, b, c = user-specified parameters.

When this feature is invoked by the user, GEB is applied to all events that deposit energy in 

the detector, most of which are from the Compton continuum rather than the photopeak. 

†††Timothy Gregoire, Radiation Systems Engineer, Rapiscan Systems Inc., November 2011–October 2012, 12 personal emails to 
Robert Anigstein.
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“The energy actually scored is sampled from a Gaussian with [the specified] FWHM” 

(Pelowitz 2011).

RESULTS

Ludlum Model 44-2 gamma scintillator

The normalized count rates derived from the measurements on the Ludlum Model 44-2 

gamma scintillator are shown in Table 4. The measured count rates were corrected for dead-

time losses, applying the following formula (Knoll 2010):

(2)

where

n = true count rate (cps);

m = observed count rate (cps); and

τ = dead time (s).

According to Ludlum Measurements Inc., the dead time for the Ludlum gamma scintillator 

coupled to a Ludlum Model 16 Analyzer is 10 μs.‡‡‡

An expression derived by Knoll (2010) for the standard deviation of measurements recorded 

on a counting rate meter, based on Poisson statistics, was used to calculate the standard 

deviations of the measured count rates:

(3)

where

σr = standard deviation of net count rate measured on a counting rate meter (s−1);

b = background count rate (s−1);

r = observed count rate (s−1); and

τ = time constant of rate meter (s).

The time constant of the Model 16 Analyzer is not listed in the technical specifications of 

this instrument. However, Ludlum (2011) stated that the time from 10 to 90% of the final 

reading is 22 s with the fast-slow meter response switch in the slow position. The response 

time of the instrument can be expressed by the following equations, which were solved 

numerically to yield the time constant:

‡‡‡Ludlum Measurements Inc., 17 December 2015, personal email to Robert Anigstein.
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where

τ = time constant (calculated); =10.6 s;

t10 = time to achieve 10% deflection (s);

t90 = time to achieve 90% deflection (s);

t10→90 = time from 10 to 90% deflection; and = 22 s (Ludlum 2011).

The uncertainties in the experimental count rates listed in Table 4 are given by 

. The relative uncertainties are in the range of 1.3–4.2%. These 

calculated uncertainties do not include the uncertainty in the analog meter on the Model 16 

Analyzer. These uncertainties are listed for reference only—as discussed later, these values 

were not used in determining the overall goodness of fit between experimental and simulated 

results.

As an initial verification of the experimental data, the response of the instrument was 

simulated by using MCNPX to calculate the exposure rate in air from the 137Cs source at a 

point corresponding to the center of the NaI(Tl) crystal. The “typical sensitivity” of 175 

min−1 μR−1 h (4.07 × 1013 C kg−1) cited by Ludlum (2014) was then used to calculate the 

count rate. The calculations yielded count rates of 1,636 and 101 s−1 for the two detector 

locations, while the measured net count rates were 1,635 and 100 s−1, respectively. Given the 

uncertainties in the meter readings and in the calibration of the 137Cs source, this constitutes 

excellent agreement and confirms the accuracy of the instrument calibration and of the 

laboratory measurements. This calculation did not use the MCNP model of this instrument.

To use the MCNPX results, which were tallied in 1-keV-wide bins starting at E = 0, to 

simulate the normalized experimental count rates, it was necessary to specify the low-energy 

threshold of the instrument. However, Ludlum could not provide the threshold energy for 

this detector. In order to determine the threshold energy that produced the best fit between 

the experimental measurements and the MCNPX simulations, the results of each of the 

MCNPX analyses for the various radio-nuclides and source locations were processed using a 

range of threshold energies down to 1 keV, the lower limit of the MCNPX energy range for 

photons and electrons.

The goodness of fit of the calculated to experimental data is based on the least root-mean-

square (rms) weighted deviation of the data sets listed in Table 4. The weight assigned to 

each relative deviation is a function of the uncertainties of the calculated and the 

experimental data. As stated earlier, the standard deviation of the experimental results has 

two components: σr, derived from eqn (3), and cv of the calibration sources, listed in Table 

1. Since the same source was used for the measurements on a given radionuclide at two 
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source-to-detector distances, the experimental uncertainties listed in Table 4 were not 

applied to each individual measurement, since the source strength did not vary between 

measurements on that radionuclide. A two-step process was employed instead.

The first step was to determine the goodness of fit of the calculated to experimental data for 

each radionuclide by the following expression, which is partially based on Knoll (2010):

where

Δ̄ j = rms relative deviation of calculated values for radioactive calibration source j 
from corresponding experimental measurements;

nj = number of measurements on calibration source j;

Δij = relative deviation of calculated value i for calibration source j from 

corresponding experimental measurement;

yij = count rate i derived from MCNPX simulation of calibration source j (s−1);

xij = net measured count rate i from calibration source j (s−1);

wij = weight assigned to Δij;

σΔij = standard deviation of Δij;

 (based on Knoll 2010); x2

σrij = standard deviation of count rate i from calibration source j (s−1);

σyij = standard deviation of calculated MCNPX result i for calibration source j, 
derived from MCNPX output (s−1).

Next, the goodness of fit of all the calculated to experimental data for a given instrument was 

determined by the following expression:
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(4)

Δ̄′ = rms relative deviation of calculated values from corresponding experimental 

measurements on a given instrument;

nc = number of calibration sources; and

 = weight assigned to Δ̄j

cvj = coefficient of variation of calibration source j.

The best agreement between the measured and calculated data was achieved by using a 1-

keV threshold. Although this does not mean that the detector can in fact measure 1-keV 

photons, this threshold was used as a fitting parameter to match the measured data. The 

results of the comparison are shown in Table 4. The calculated count rates are based on 

MCNPX simulations that did not use GEB. The rms relative deviation Δ̄′ = 10.9%.

Captus 3000 thyroid uptake system

The experimental results for the Captus 3000 thyroid uptake system are listed in Table 2. 

The system incorporates dead time corrections into the count rate,§§§ so no further 

corrections were required.

For instruments on which counts were accumulated for a fixed period of time, such as the 

Captus 3000 and the TPM-903B portal monitor, eqn (3) becomes

where σc = standard deviation of net count rate measured for a fixed time (s−1), and tc = 

counting time (equal times for background counts and source measurements) (s).

The measurements on 137Cs employed both 10–750 keV and 108–686 keV windows. 

Although the narrower window produced lower background counts, it also lowered the 

counts from the source, resulting in higher relative errors.

§§§Mary Anne Yusko, Vice President, Product Development and Regulatory Affairs, 18 December 2015, personal email to Robert 
Anigstein.
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The uncertainties in the experimental count rates, listed in Table 2, are given by 

. The relative experimental uncertainties are in the range of 1.2–1.7%. 

These uncertainties are listed for reference only—the overall goodness of fit between 

experimental and simulated results was determined by eqn (4).

Since energy windows were set on this instrument during the experiment, the counts from 

the MCNPX simulations were summed over these energy ranges.**** The results of the 

comparison are shown in Table 2. The rms relative deviation Δ ̄′ = 4.2%.

MCNPX simulations using a range of GEB parameters showed modest improvements in the 

fit to the measured data. However, since calculations that did not employ GEB showed 

acceptable agreement, this simpler model was adopted for this instrument.

TPM-903B portal monitor

The results of the experiments on the TPM-903B portal monitor are shown in Table 5. The 

measured count rates were corrected for dead-time losses using eqn (2). The dead time of 

the system was calculated to be 2.9 μs.††††

The uncertainties in the experimental count rates listed in Table 5 are given by 

. The relative experimental uncertainties are in the range of 1.3–10.6%. 

The normalized count rates on the monitor were simulated using MCNPX, employing the 

GEB option. This approach is partly based on Siciliano et al. (2008), who used MCNP5 to 

simulate the response of a PVT scintillator in the shape of a right circular cylinder 5 cm 

thick and 36 cm in diameter to a point source of 137Cs (the manufacturer of the detector was 

not identified). These authors, together with other investigators, reported that PVT plastic 

scintillators exhibit wide energy broadening. Full-energy photopeaks were not observed 

because the predominant interaction of high-energy photons was by Compton scattering. 

Siciliano et al. employed a one-parameter GEB function: a and c in eqn (1) in the present 

paper were set to zero. Adjusting b to yield widths equal to 1%, 14%, 25%, 50%, and 75% 

of the peak energy at 662 keV, they found that a value of 50% produced the best fit to the 

experimental spectrum. They explained that GEB was used “to lump together all the effects 

that generate the observed broad PVT spectra.”

In the present study, a series of MCNPX simulations were performed of the count rates on 

the portal monitor using a one-parameter GEB function. The parameter b was varied in 

discrete steps, centered on the value adopted by Siciliano et al. (2008). Because of the 

uncertainty of the low-energy threshold, the count rates for each value of the b parameter 

were calculated for a range of threshold energies, similar to the procedure used for the 

Ludlum gamma scintillator. The low-energy threshold that yielded the best agreement 

between the measured and simulated count rates (i.e., the lowest Δ̄′) was determined for 

each value of the b parameter and for each of the two LLD settings listed in Table 5. The 

best overall agreement was achieved by using a b parameter corresponding to an energy 

****Energy calibration and constancy tests were performed on the instrument prior to the experimental measurements.
††††Timothy Gregoire, Radiation Systems Engineer, Rapiscan Systems Inc., 14 November 2011, personal email to Robert Anigstein.
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resolution of 45% at 661.66 keV and threshold energies of 34.75 and 56 keV for the two 

LLD settings. The rms relative deviation Δ̄′ = 0.9%.

DISCUSSION

Ludlum Model 44-2 gamma scintillator

The results for the Ludlum Model 44-2 gamma scintillator listed in Table 4 show that the Δs 

are negative, with the calculated values differing by −5.2 to −15.8% from the experimental 

values, which indicates that the MCNPX calculations consistently underestimate the count 

rates. Underpredicting the count rates would lead to a more conservative assessment if the 

model were used to estimate the intakes of radionuclides and subsequent doses to 

individuals with internal contamination.

Captus 3000 thyroid uptake system

The results for the Captus 3000 thyroid uptake system listed in Table 2 show acceptable 

agreement between the calculated and measured count rates, with differences ranging from 

−9 to +6%. The count rate from the 137Cs source at 17.25 cm from the detector, using the 

10–750 keV energy window, appears to be an outlier. However, since there is no sound basis 

for discarding this measurement, it was retained in the analysis.

TPM-903B portal monitor

The results for the TPM-903B portal monitor listed in Table 5 show excellent agreement 

between the calculated and experimental count rates. The differences in the six sets of count 

rates range from −4.9 to +1.1%. It should be noted that the uncertainty of each difference, 

listed as an absolute percentage in the far right column, exceeds the absolute value of the 

difference. Therefore, the measured and calculated values agree within the combined 

experimental and statistical errors.

The energy resolution of the TPM-903B is affected by the nonlinearity of this system at low 

energies and by the dependence of the signal on the spatial position of the incident photon in 

the 183-cm-long detectors, as well as by the stochastic nature of the scintillation process. 

The GEB function accounts for the combined effect of these physical phenomena. The GEB 

parameter and the corresponding low-level energy thresholds derived in the present study 

should be viewed as fitting parameters in a model that can allow this instrument to be used 

in the assessment of intakes of radio-nuclides by an affected individual.

CONCLUSION

The present study validated the MCNP models of three instruments: the Ludlum Model 44-2 

gamma scintillator, the Captus 3000 thyroid uptake system, and the TPM-903B portal 

monitor. In all three cases, agreement between the measured and calculated values was 

achieved without the use of empirical radionuclide-dependent scaling factors that were 

employed by other investigators. The utility of these instruments for the in vivo assessments 

of affected individuals will be evaluated in a forthcoming publication that will describe the 
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computer simulations of the response of these instruments to radionuclides distributed in 

various anatomical regions of the human body as a function of time and mode of intake.
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Fig. 1. 
Schematic Diagram of TPM-903B Portal Monitor (TSA 2006).
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Fig. 2. 
MCNP model of Ludlum 44-2 gamma scintillator (scale in cm).

Anigstein et al. Page 17

Health Phys. Author manuscript; available in PMC 2017 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
MCNP model of Captus 3000 thyroid probe (scale in cm).
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Fig. 4. 
MCNP model of TPM-903B portal monitor (scale in cm).
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Table 1

Radioactive calibration sources.

Radionuclide Half-lifea (y) Activity (kBq)

Uncertainty (%)

99th %ileb cv

60Co 5.2712 140 3.1 1.20

137Cs 30.08 303 3.1 1.20

241Am 432.6 331 3.44 1.33

a
BNL (2015).

b
Certified by manufacturer.

Health Phys. Author manuscript; available in PMC 2017 November 27.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Anigstein et al. Page 21

Ta
b

le
 2

C
om

pa
ri

so
n 

of
 e

xp
er

im
en

ta
l a

nd
 c

al
cu

la
te

d 
co

un
t r

at
es

 o
n 

C
ap

tu
s 

30
00

 T
hy

ro
id

 U
pt

ak
e 

Sy
st

em
.

N
uc

lid
e

E
ne

rg
y 

w
in

do
w

 (
ke

V
)

D
is

ta
nc

e 
(c

m
)

E
xp

er
im

en
t 

(s
−1

 B
q−1

)
M

C
N

P
X

 (
s−1

 B
q−1

)
C

om
pa

ri
so

n

x
σ x

y
σ y

 a
Δ

b
σ Δ

c

60
C

o
10

–1
,4

00
17

.7
7.

53
 ×

 1
0−

3
9.

30
 ×

 1
0−

5
7.

53
 ×

 1
0−

3
4.

90
 ×

 1
0−

6
0.

0%
1.

2%

50
.0

9.
67

 ×
 1

0−
4

1.
43

 ×
 1

0−
5

9.
64

 ×
 1

0−
4

6.
27

 ×
 1

0−
7

−
0.

2%
1.

5%

13
7 C

s
10

–7
50

17
.2

5
4.

26
 ×

 1
0−

3
5.

24
 ×

 1
0−

5
3.

87
 ×

 1
0−

3
7.

16
 ×

 1
0−

6
−

9.
0%

1.
2%

50
.0

5.
05

 ×
 1

0−
4

7.
26

 ×
 1

0−
6

4.
95

 ×
 1

0−
4

1.
02

 ×
 1

0−
6

−
1.

9%
1.

4%

10
8–

68
6

17
.2

5
3.

25
 ×

 1
0−

3
4.

02
 ×

 1
0−

5
3.

17
 ×

 1
0−

3
6.

55
 ×

 1
0−

6
−

2.
4%

1.
3%

50
.0

3.
98

 ×
 1

0−
4

5.
94

 ×
 1

0−
6

4.
10

 ×
 1

0−
4

9.
37

 ×
 1

0−
7

3.
1%

1.
5%

24
1 A

m
10

–7
2

17
.3

5
2.

36
 ×

 1
0−

3
3.

24
 ×

 1
0−

5
2.

38
 ×

 1
0−

3
1.

87
 ×

 1
0−

6
0.

9%
1.

4%

50
.0

2.
76

 ×
 1

0−
4

4.
56

 ×
 1

0−
6

2.
93

 ×
 1

0−
4

5.
05

 ×
 1

0−
7

6.
0%

1.
7%

a C
al

cu
la

te
d 

fr
om

 M
C

N
PX

 r
es

ul
ts

.

b M
C

N
PX

 ÷
 e

xp
 −

 1
.

c St
an

da
rd

 d
ev

ia
tio

n 
of

 Δ
.

Health Phys. Author manuscript; available in PMC 2017 November 27.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Anigstein et al. Page 22

Ta
b

le
 3

Ph
ot

on
 s

pe
ct

ra
 o

f 
ra

di
on

uc
lid

es
 u

se
d 

in
 p

re
se

nt
 a

na
ly

si
s.

a

60
C

o
13

7 C
s

24
1 A

m

E
 (

ke
V

)
I 

(%
)

E
 (

ke
V

)
Ib

 (
%

)
E

 (
ke

V
)

I 
(%

)

7.
41

78
2

0.
00

32
4.

47
0.

91
47

13
.5

11
4

1.
54

89

7.
43

57
8

0.
00

62
31

.8
17

1.
99

28
13

.9
38

7
10

.7
29

5

8.
22

23
1

0.
00

04
32

.1
94

3.
63

52
17

.5
39

2
10

.5
43

8.
22

45
9

0.
00

08
36

.3
04

0.
34

79
21

.1
28

8
2.

41
19

34
7.

14
0.

00
75

36
.3

78
0.

67
18

26
.3

44
6

2.
27

82
6.

1
0.

00
76

37
.2

55
0.

21
25

33
.1

96
0.

12
6

1,
17

3.
22

99
.8

5
66

1.
65

7
85

.1
42

.7
04

0.
00

55

1,
33

2.
49

99
.9

82
6

To
ta

l
92

.8
75

43
.4

2
0.

07
3

2,
15

8.
57

0.
00

12
55

.5
6

0.
01

81

To
ta

l
19

9.
85

95
59

.5
40

9
35

.9

69
.7

6
0.

00
29

97
.4

98
0.

00
11

98
.9

7
0.

02
03

10
1.

57
4

0.
00

18

10
2.

98
0.

01
95

12
5.

3
0.

00
41

To
ta

l
63

.6
75

6

a A
da

pt
ed

 f
ro

m
 B

N
L

 (
20

15
) 

an
d 

L
A

N
L

 (
20

12
).

 V
al

ue
s 

us
ed

 in
 M

C
N

PX
 a

na
ly

se
s,

 e
xc

ep
t a

s 
no

te
d.

 L
is

te
d 

pr
ec

is
io

n 
m

ay
 e

xc
ee

d 
pr

ec
is

io
n 

of
 a

do
pt

ed
 v

al
ue

s.

b V
al

ue
s 

ro
un

de
d.

Health Phys. Author manuscript; available in PMC 2017 November 27.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Anigstein et al. Page 23

Ta
b

le
 4

C
om

pa
ri

so
n 

of
 e

xp
er

im
en

ta
l a

nd
 c

al
cu

la
te

d 
co

un
t r

at
es

 o
n 

L
ud

lu
m

 M
od

el
 4

4–
2 

ga
m

m
a 

sc
in

til
la

to
r.

N
uc

lid
e

D
is

ta
nc

e 
(c

m
)

E
xp

er
im

en
t 

(s
−1

 B
q−1

)
M

C
N

P
X

 (
s−1

 B
q−1

)
C

om
pa

ri
so

n

x
σ r

,x
y

σ y
 a

Δ
b

σ 
Δ
 c

60
C

o
5

8.
25

 ×
 1

0−
3

1.
13

 ×
 1

0−
4

7.
82

 ×
 1

0−
3

5.
48

 ×
 1

0−
6

−
5.

2%
1.

4%

30
4.

04
 ×

 1
0−

4
1.

69
 ×

 1
0−

5
3.

61
 ×

 1
0−

4
1.

44
 ×

 1
0−

6
−

10
.7

%
3.

8%

13
7 C

s
5

5.
40

 ×
 1

0−
3

7.
13

 ×
 1

0−
5

4.
86

 ×
 1

0−
3

2.
92

 ×
 1

0−
6

−
9.

9%
1.

3%

30
2.

48
 ×

 1
0−

4
8.

55
 ×

 1
0−

6
2.

19
 ×

 1
0−

4
7.

01
 ×

 1
0−

7
−

11
.6

%
3.

1%

24
1 A

m
5

5.
15

 ×
 1

0−
3

7.
41

 ×
 1

0−
5

4.
34

 ×
 1

0−
3

2.
17

 ×
 1

0−
6

−
15

.8
%

1.
3%

30
1.

74
 ×

 1
0−

4
7.

13
 ×

 1
0−

6
1.

58
 ×

 1
0−

4
4.

73
 ×

 1
0−

7
−

9.
5%

3.
7%

a C
al

cu
la

te
d 

fr
om

 M
C

N
PX

 r
es

ul
ts

.

b M
C

N
PX

 ÷
 e

xp
 −

 1
.

c St
an

da
rd

 d
ev

ia
tio

n 
of

 Δ
.

Health Phys. Author manuscript; available in PMC 2017 November 27.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Anigstein et al. Page 24

Ta
b

le
 5

C
om

pa
ri

so
n 

of
 e

xp
er

im
en

ta
l a

nd
 c

al
cu

la
te

d 
co

un
t r

at
es

 o
n 

T
PM

-9
03

B
 p

or
ta

l m
on

ito
r.

N
uc

lid
e

E
le

ct
ro

ni
c 

L
L

D
 (

V
)

T
hr

es
ho

ld
 e

ne
rg

y 
(k

eV
)

E
xp

er
im

en
t 

(s
−1

 B
q−1

)
M

C
N

P
X

 (
s−1

 B
q−1

)
C

om
pa

ri
so

n

C
ou

nt
 r

at
e

σ e
C

ou
nt

 r
at

e
σ y

 a
Δ

b
σ Δ

 c

60
C

o
0.

05
4

34
.8

2.
97

 ×
 1

0−
2

3.
87

 ×
 1

0−
4

2.
94

 ×
 1

0−
2

2.
94

 ×
 1

0−
5

−
1.

1%
1.

3%

0.
09

8
56

.0
2.

84
 ×

 1
0−

2
3.

70
 ×

 1
0−

4
2.

83
 ×

 1
0−

2
2.

83
 ×

 1
0−

5
−

0.
4%

1.
3%

13
7 C

s
0.

05
4

34
.8

1.
47

 ×
 1

0−
2

1.
90

 ×
 1

0−
4

1.
47

 ×
 1

0−
2

1.
32

 ×
 1

0−
5

−
0.

2%
1.

3%

0.
09

8
56

.0
1.

36
 ×

 1
0−

2
1.

76
 ×

 1
0−

4
1.

37
 ×

 1
0−

2
1.

37
 ×

 1
0−

5
1.

1%
1.

3%

24
1 A

m
0.

05
4

34
.8

9.
07

 ×
 1

0−
4

4.
86

 ×
 1

0−
5

9.
14

 ×
 1

0−
4

3.
56

 ×
 1

0−
6

0.
8%

5.
4%

0.
09

8
56

.0
4.

03
 ×

 1
0−

4
4.

26
 ×

 1
0−

5
3.

83
 ×

 1
0−

4
2.

34
 ×

 1
0−

6
−

4.
9%

10
.1

%

a C
al

cu
la

te
d 

fr
om

 M
C

N
PX

 r
es

ul
ts

.

b M
C

N
PX

 ÷
 e

xp
 −

 1
.

c St
an

da
rd

 d
ev

ia
tio

n 
of

 Δ
.

Health Phys. Author manuscript; available in PMC 2017 November 27.


	Abstract
	INTRODUCTION
	Previous studies
	Present work

	MATERIALS AND METHODS
	Radioactive calibration sources
	Ludlum Model 44-2 gamma scintillator
	Captus 3000 thyroid uptake system
	TPM-903B portal monitor
	Monte Carlo simulations of experimental measurements
	Gaussian energy distribution

	RESULTS
	Ludlum Model 44-2 gamma scintillator
	Captus 3000 thyroid uptake system
	TPM-903B portal monitor

	DISCUSSION
	Ludlum Model 44-2 gamma scintillator
	Captus 3000 thyroid uptake system
	TPM-903B portal monitor

	CONCLUSION
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5

